Mathematical Statistics
Test 1
Spring 2006
Name: \qquad
$16+(4+4+4+4+2)+20+24+(4+4+4+2)+4+4=100$
1 Let the joint p.d.f. of X and Y be defined by $f(x, y)=c, x^{2} \leq y \leq 1,0 \leq x \leq 1$. Find
(a) the value of c.
(b) $\quad f_{1}(x)$, the marginal p.d.f. of X.
(c) $\quad f_{2}(x)$, the marginal p.d.f. of Y.
(d) $\quad P(X \geq 0.5, Y \geq 0.5)$.

2 Assume that X and Y have a bivariate normal distribution with $\mu_{X}=22.7, \sigma_{X}^{2}=17.64, \mu_{Y}=22.7, \sigma_{Y}^{2}=12.25$ and $\rho=0.78$. Find
(a) $\quad P(18.5<Y<25.5)$.
(b) $E(Y \mid X)$.
(c) $\quad \operatorname{Var}(Y \mid X)$.
(d) $\quad P(18.5<Y<25.5 \mid X=23)$.
(e) Are X and Y independent? Explain.

3 Suppose X and Y are continuous random variables with joint p.d.f. $f(x, y)=60 x^{2} y$ for $x>0, y>0, x+y<1$, and zero otherwise. Find the following:
(a) Marginal distribution of X.
(b) Conditional p.d.f. of Y given X.
(c) $\quad P(Y>0.1 \mid X=0.5)$.
(d) $E(Y \mid X=x)$.
(e) $\quad \operatorname{Var}(Y \mid X=x)$.
$4 \quad$ Suppose X and Y are continuous random variables with joint p.d.f. $f(x, y)=(x+y), 0<x<1,0<y<1$, and zero otherwise. Find each of the following: (Use symmetry to save time)
(a) $\quad f_{1}(x)$ and $f_{2}(y)$.
(b) μ_{x} and μ_{y}.
(c) σ_{x}^{2} and σ_{y}^{2}.
(d) $E(X Y)$.
(e) $\operatorname{Cov}(X, Y)$.
(f) $\quad \rho$.

5 Suppose that the random variables X and Y have the following joint p.d.f.:

$$
f(x, y)=4 x y \text {, for } 0 \leq x \leq 1,0 \leq y \leq 1 .
$$

Also let $U=X$ and $V=X Y$.
(a) Draw the support of X and Y, and that of U and V.
(b) Determine the joint p.d.f of U and V.
(c) Find the marginal distributions of U and V. (Marginal distribution of V may look a little strange.)
(d) Are U and V independent?

You may give up points and ask me to show you how to draw the support of U and V.
$6 \quad X$ and Y are independent random variables with common m.g.f.. function $M(t)=\exp \left(\frac{t^{2}}{2}\right)$. Let $W=X+Y$ and $Z=Y-X$. Determine the joint m.g.f $M_{W, Z}\left(t_{1}, t_{2}\right)$ of W and Z.

7 Let $U_{1} \sim \chi_{(5)}^{2}$ and $U_{2} \sim \chi_{(3)}^{2}$ are two independent χ^{2} random variables with respective degrees of freedom 5 and 3 . Define a random variable which has a F distribution. What are the numerator and denominator degrees freedom?

RV:

Numerator d.f.

Denominator d.f.

