Mathematical statistics Spring 2006 Test 2 Closed book 50% Name:.....

1 Let $f(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}}$, x > 0, $\theta > 0$. Let X_1, X_2, \dots, X_n denote a random sample of

size n from this distribution.

- (a) What is the parameter space Ω of this distribution?
- (b) Find the maximum likelihood estimator (MLE) of θ .
- (c) Find the method of moments (MOM) estimator of θ . {Note: $E(X) = \theta$.}
- (d) Is the MLE of θ unbiased? (Show your work.)
- (e) Find P(X > 1) and the MLE of P(X > 1).

- 2 Consider a random sample $(X_1, X_2, ..., X_n)$ from an exponential distribution with mean θ .
 - (a) Show that $S = \sum_{i=1}^{n} X_i$ is a sufficient statistics for θ .
 - (b) Show that the distribution of $S = \sum_{i=1}^{n} X_i$ is a Gamma (n, θ) distribution. (Hint: Use m.g.f.)
 - (c) Find the conditional distribution of $(X_1, X_2, ..., X_n)$ given S. (You can do part c even if you can not do part b.)

3 Let $X_1, X_2, ..., X_n$ denote a random sample of size *n* from $N(\mu, \sigma^2)$ where σ is unknown. Prove that $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{(n-1)}$. Derive a 100(1- α)% symmetric confidence interval for the population mean μ .

Hint: $\overline{X} \pm t_{\frac{\alpha}{2},n-1} \frac{S}{\sqrt{n}}$

4 Let $X_1, X_2, ..., X_n$ denote a random sample of size *n* from $Uni(\theta, 2)$.

- (a) Find the MLE of θ .
- (b) Find the distribution of $y_1 = \min(X_1, X_2, ..., X_n)$.
- (c) Is the MLE of θ unbiased? Show your work.

Hint: $x(2-x)^{n-1} = -(2-x-2)(2-x)^{n-1} = 2(2-x)^{n-1} - (2-x)^n$

Consider a random sample $(X_1, X_2, ..., X_n)$ from a $Geo(\theta)$.

(a) If
$$E(X_i) = \frac{1}{\theta}$$
 for $i = 1, 2, ..., n$, than show that \overline{X} is an unbiased
estimator for $\tau(\theta) = \frac{1}{\theta}$.
(b) If $Var(X) = \frac{1-\theta}{\theta}$ for $i = 1, 2, ..., n$, then show that $Var(\overline{X}) = \frac{1-\theta}{\theta}$.

(b) If
$$Var(X_i) = \frac{1-\theta}{\theta^2}$$
 for $i=1, 2, ..., n$, then show that $Var(\overline{X}) = \frac{1-\theta}{n\theta^2}$.

- (c) Find the Cremer-Rao lower bound for the variance of any unbiased estimator of $\tau(\theta)$.
- (d) Is \overline{X} UMVUE of $\tau(\theta)$? Explain.

5

Open book part 50%

- 6 6.4.6
- 7 6.4.8
- 8 6.5.2
- 9 6.5.12
- 10 6.6.2
- 11 6.6.8
- 12 6.7.4
- 13 6.7.14
- 14 6.8.4
- 15 6.8.8