Mathematical Statistics Spring 2006 Test 4 (Closed Book) Name:.....

- 1 Consider a random sample $(X_1, X_2, ..., X_n)$ from a $N(\mu, 64)$.
 - (a) Find a best critical region for testing $H_o: \mu = 44$ against $H_a: \mu = 40$.
 - (b) Find *n* and *c* such that $\alpha = 0.05$ and $\beta = 0.10$.

- 2 Consider a random sample $(X_1, X_2, ..., X_n)$ from a *Bernoulli*(p).
 - (a) To test $H_o: p = 0.5$ against $H_a: p = 0.7$, what is the critical region specified by the likelihood ratio test criterion?
 - (b) Is this test uniformly most powerful? Explain carefully.
 - (c) Can H_o be rejected at 0.0592 level of significance if a random sample of size 15 yielded $\sum_{i=1}^{15} X_i = 11$? Note that $\sum_{i=1}^{15} X_i \sim Binomial(15, p)$
 - (d) What is the p-value of this test?

You may want to use Binomial tables for parts (c) and (d).

- 3 Let $X \sim N(\mu, 100)$. To test $H_o: \mu = 80$ against $H_a: \mu < 80$, let the critical region be defined by $C = \{(x_1, x_2, ..., x_{25}): \overline{x} \le 77\}$, where \overline{x} is the sample mean of a random sample of size 25 from this distribution.
 - (a) What is the power function $K(\mu)$ of this test?
 - (b) What is the significant level of this test?
 - (c) What are the values of K(80), K(77), and K(74)?
 - (d) What is the p-value corresponding to $\overline{x} = 76.52$?

- 4 Consider a random sample $(X_1, X_2, ..., X_5)$ from a $Poi(\lambda)$, $\lambda > 0$. Suppose we are interested in a Bayes estimator of λ assuming the squared error loss function.
 - (a) Find the posterior distribution of λ given the data, that is $p(\lambda | x_1, x_2, ..., x_5)$ if the prior distribution of λ is $h(\lambda) = 4\lambda^2 e^{-2\lambda}$, $\lambda > 0$. Assume $\sum_{i=1}^{5} X_i = 4$.
 - (b) Find the Bayes estimator of λ with respect to the squared error loss function.
 - (c) Show that the Bayes estimator is a weighted average of the MLE of λ and the prior mean with weights $\frac{5}{7}$ and $\frac{2}{7}$ respectively.

(a) Let X have a normal distribution with parameter θ , $\left(\theta = \frac{1}{\sigma^2}\right)$. That is

$$f(x) = \frac{\sqrt{\theta}}{\sqrt{2\pi}} e^{-\frac{\theta x^2}{2}}.$$
 Let the prior of θ be $\text{Exp}(\beta)$. That if $p(\theta) = \frac{1}{\beta} e^{-\frac{\theta}{\beta}}, \ \beta > 0.$ Find the posterior distribution and its mean.

(b) Find the predictive distribution of X.

5