Mathematical Statistics
Spring 2003
Test 1
Name:......................................
1 Let the joint p.m.f of X and Y be given by $f(x, y)=\frac{x y^{2}}{30}$, for $x=1,2,3$ and $y=1,2$ and zero otherwise. (This is a discrete distribution)
(a) Construct a probability table.
(b) Find the marginal distribution of X.
(c) Find the marginal distribution of Y.
(d) Are X and Y independent? Explain.
(e) Find $P(X+Y>3)$.

2 Suppose X and Y are continuous random variables with joint p.d.f. $f(x, y)=60 x^{2} y$ for $x>0, y>0, x+y<1$, and zero otherwise. Find the following:
(a) Marginal distribution of X.
(b) Conditional p.d.f. of Y given X.
(c) $\quad P(Y>0.1 \mid X=0.5)$.
(d) $E(Y \mid X=x)$.
(e) $\operatorname{Var}(Y \mid X=x)$.

3 Suppose X and Y are continuous random variables with joint p.d.f. $f(x, y)=c(x+y), 0<x<1,0<y<1$, and zero otherwise. Find each of the following: (Use symmetry to save time)
(a) Evaluate the constant c.
(b) $\quad f_{1}(x)$ and $f_{2}(y)$.
(c) $\quad \mu_{x}$ and μ_{y}.
(d) σ_{x}^{2} and σ_{y}^{2}.
(e) $E(X Y)$.
(f) $\operatorname{Cov}(X, Y)$.
(g) $\quad \rho$.

4 Assume that X and Y have a bivariate normal distribution with, $\mu_{X}=70$, $\sigma_{X}^{2}=100, \mu_{Y}=80, \sigma_{Y}^{2}=169$ and $\rho=0.4$. Find the following:
(a) $\quad P(Y<100)$.
(b) $\quad E(Y \mid X=x)$.
(c) $\operatorname{Var}(Y \mid X=x)$.
(d) $\quad P(Y<100 \mid X=72)$.
(e) Are X and Y independent?

5 Suppose that the random variables X and Y have the following joint p.d.f:

$$
f(x, y)=4 x y, \text { for } 0 \leq x \leq 1,0 \leq y \leq 1 .
$$

Also let $U=X$ and $V=X Y$.
(a) Draw the support of X and Y, and that of U and V.
(b) Determine the joint p.d.f of U and V.
(c) Find the marginal distributions of U and V. (Marginal distribution of V may look a little strange.)
(d) Are U and V independent?

Take home problem (10 points)

6 Let $Y_{1}<Y_{2}<\ldots<Y_{n}$ be the order statistic of n independent observations from $U(0, a)$ distribution. Find the following:
(a) The p.d.f. of Y_{1}.
(b) The p.d.f. of Y_{n}.
(c) $\quad E\left(Y_{1}\right)$.
(d) $E\left(Y_{n}\right)$.
(e) Is $E\left(Y_{n}\right)=a$? (If $E\left(Y_{n}\right)=a, Y_{n}$ is called an unbiased estimator for a.)
(f) If $E\left(Y_{n}\right) \neq a$, find $b\left(Y_{n}\right)=E\left(Y_{n}\right)-a .\left(b\left(Y_{n}\right)\right.$ is called the bias of the estimator)
(g) Find $\lim _{n \rightarrow \infty} E\left(Y_{n}\right)$ and $\lim _{n \rightarrow \infty} b\left(Y_{n}\right) .\left(\right.$ If $\lim _{n \rightarrow \infty} E\left(Y_{n}\right)=a$, or equivalently $\lim _{n \rightarrow \infty} b\left(Y_{n}\right)=0, Y_{n}$ is called an asymptotically unbiased estimator for a.)

