Mathematical Statistics
Test 1
Spring 2005
Name:
$15+16+10+20+20+5+5+5+5$
1 Let the joint p.d.f. of X and Y be defined by $f(x, y)=\frac{x+y}{12}, x=1,2, y=1,2$.
Find
(a) $\quad f_{1}(x)$ and $f_{2}(x)$, the marginal p.d.f.'s of X and Y.
(b) μ_{X} and μ_{Y}.
(c) σ_{X}^{2} and σ_{Y}^{2}.
(d) $\operatorname{Cov}(X, Y)$.
(e) $\quad \rho$.
(Use symmetry)

2 Suppose that the random variables X and Y have the following joint p.d.f.: $f(x, y)=8 x y$ for $0 \leq x \leq y \leq 1$.
Also let $U=\frac{X}{Y}$ and $V=Y$.
(a) Draw the support of X and Y, and that of U and V.
(b) Determine the joint p.d.f of U and V.
(c) Find the marginal distributions of U and V.
(d) Are U and V independent?

Suppose that the joint p.d.f. of two random variables X and Y is as follows:

$$
f(x, y)=\left\{\begin{array}{cl}
c\left(x+y^{2}\right) & \text { for } 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find
(a) the conditional p.d.f. of X for any given value of Y.
(b) $\quad P(X<0.5 \mid Y=0.5)$.

4 Assume that X and Y have a bivariate normal distribution with, $\mu_{X}=10, \sigma_{X}^{2}=$ $16, \mu_{Y}=12, \sigma_{Y}^{2}=9$ and $\rho=0.8$. Find
(a) $\quad P(9<Y<17.5)$.
(b) $\quad E(Y \mid X)$.
(c) $\quad \operatorname{Var}(Y \mid X)$.
(d) $\quad P(9<Y<17.5 \mid X=11)$.
(e) $\quad f_{X}(x)$.

5 Let the joint p.d.f. of X and Y be defined by $f(x, y)=2,0 \leq x \leq y \leq 1$. Find
(a) $\quad f_{1}(x)$, the marginal p.d.f. of X.
(b) $\quad h(y \mid x)$, the conditional distribution of Y given $X=x$.
(c) $E(Y \mid X=x)$, the conditional mean of Y given $X=x$.
(d) If it is given that $\sigma_{X}^{2}=\sigma_{Y}^{2}$, find the value of ρ. (Hint: If $E(Y \mid X=x)$ is linear, it is the least squares regression line.)
$6 \quad$ P rove that $\operatorname{Var}(Y)=E[\operatorname{Var}(Y \mid X)]+\operatorname{Var}[E(Y \mid X)]$.
$7 \quad$ Let X and Y be random variables with joint moment generating function $M_{X, Y}\left(t_{1}, t_{2}\right)=0.3+0.1 e^{t_{1}}+0.2 e^{t_{2}}+0.4 e^{t_{1}+t_{2}}$. What is $E(2 X-Y)$?

8 Let $U_{1} \sim \chi_{(5)}^{2}$ and $U_{2} \sim \chi_{(3)}^{2}$ are two independent χ^{2} random variables with respective degrees of freedom 5 and 3 . Let $V=\frac{U_{1}}{U_{2}}$. Find c such that $P(V \geq c)=0.05$.

9 Let X_{1}, X_{2}, and X_{3} be a random sample from $\operatorname{Exp}(1)$. Find the mean of the smallest order statistic.

