- 1 Let $f(x) = \theta x^{\theta-1}$, 0 < x < 1, $\theta > 0$. Let X_1, X_2, \dots, X_n denote a random sample of size *n* from this distribution.
 - (a) Find the maximum likelihood estimator (MLE) of θ .
 - (b) Find the method of moments (MOM) estimator of θ .
- 2 Let $f(x) = \frac{1}{\theta^2} x e^{-x/\theta}$, x > 0, $\theta > 0$. Let $X_1, X_2, ..., X_n$ be a random sample from this distribution. Notice that $X \sim Gamma(2, \theta)$.
 - (a) Find the maximum likelihood estimator (MLE) of θ .
 - (b) Find the method of moments estimator of θ .
 - (c) Is the MLE of θ unbiased? Show your work.

3 Let
$$f(x) = \frac{1}{\theta} e^{-\frac{(x-\eta)}{\theta}}$$
 for $x > \eta$.

- (a) Find the MLE of θ and η .
- (b) Is the MLE of η unbiased? Show your work.
- 4 Let $X_1, X_2, ..., X_n$ denote a random sample of size *n* from $N(\mu, \sigma^2)$. Derive a 100(1- α)% symmetric confidence interval (C.I.) for the population mean μ assuming σ is unknown.
- 5 Explain the invariance property.

Mathematical Statistics Test 2 (Take home) Spring 2005 50 points Name:.....

- 1 7.2.12
- 2 7.3.6 (a)
- 3 7.3.12 (a) & (b)
- 4 7.4.9
- 5 7.5.14
- 6 7.8.2 (a), find s^2 , and then a 90% confidence interval for β . You may use EXCEL.