Mathematical Statistics Spring 2003 Test 4 (Closed Book) Name:.....

- 1 Consider a random sample $(X_1, X_2, ..., X_n)$ from a Poisson distribution with mean I.
 - (a) Show that $S = \sum_{i=1}^{n} X_i$ is a sufficient statistics for I.
 - (b) Show that the distribution of $S = \sum_{i=1}^{n} X_i$ is also a Poisson distribution. (Hint: Use m.g.f.)
 - (c) Show that the conditional distribution of $(X_1, X_2, ..., X_n)$ given S is independent of I. (You can do part c even if you can not do part b.)

- 2 Consider a random sample $(X_1, X_2, ..., X_n)$ from a $N(\mathbf{m}, 81)$.
 - (a) Show that $C = \{(x_1, x_2, ..., x_n) : \overline{x} \ge c\}$ is a best critical region for testing $H_o : \mathbf{m} = 40$ against $H_a : \mathbf{m} = 44$.
 - (b) Find *n* and *c* such that $\boldsymbol{a} = 0.05$ and $\boldsymbol{b} = 0.10$.

- 3 Consider a random sample $(X_1, X_2, ..., X_n)$ from a $N(\mathbf{m}, 100)$.
 - (a) To test $H_o: \mathbf{m} = 75$ against $H_a: \mathbf{m} > 75$, what is the critical region specified by the likelihood ratio test criterion?
 - (b) Is this test uniformly most powerful? Explain.
 - (c) Can H_o be rejected at 0.05 level of significance if a random sample of size 25 yielded $\overline{X} = 78.6$?
 - (d) What is the p-value of this test?

4 Consider a random sample $(X_1, X_2, ..., X_n)$ from a b(1, p) and let t(p) = p.

- (a) If $E(X_i) = p$ for i=1, 2, ..., n, than show that \overline{X} is an unbiased estimator for t(p).
- (b) If $Var(X_i) = p(1-p)$ for i=1, 2, ..., n, then show that $Var(\overline{X}) = \frac{p(1-p)}{n}$.
- (c) Find the Cremer-Rao lower bound for the variance of any unbiased estimator of t(p).
- (d) Is \overline{X} UMVUE of t(p)? Explain.

Let $X \sim N(\mathbf{m}, 100)$. To test $H_o: \mathbf{m} = 80$ against $H_a: \mathbf{m} > 80$, let the critical region be defined by $C = \{(x_1, x_2, ..., x_{25}): \overline{x} \ge 83\}$, where \overline{x} is the sample mean of a random sample of size 25 from this distribution.

- (a) What is the power function $K(\mathbf{m})$ of this test?
- (b) What is the significant level of this test?
- (c) What are the values of K(80), K(83), and K(86)?
- (d) What is the p-value corresponding to $\overline{x} = 83.41$?

5