## Mathematical Statistics

Spring 2005
Test 4 (Closed Book)
Name: $\qquad$
$(5+5+6)+(8+8)+(6+4+4+2)+(8+8+4)+(6+4+3+3)+(8+4+4)=100$
1 Consider a random sample $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ from a Geometric distribution with parameter $p$.
(a) Show that $S=\sum_{i=1}^{n} X_{i}$ is a sufficient statistic for $p$.
(b) Show that the distribution of $S=\sum_{i=1}^{n} X_{i}$ is Negative Binomial. (Hint: Use m.g.f.)
(c) Show that the conditional distribution of $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ given $S$ is independent of $p$.

2 Consider a random sample $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ from a $N(\mu, 64)$.
(a) Find a best critical region for testing $H_{o}: \mu=44$ against $H_{a}: \mu=40$.
(b) Find $n$ and $c$ such that $\alpha=0.05$ and $\beta=0.10$.

3 Consider a random sample $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ from a $\operatorname{Bernoulli}(p)$.
(a) To test $H_{o}: p=0.5$ against $H_{a}: p=0.7$, what is the critical region specified by the likelihood ratio test criterion?
(b) Is this test uniformly most powerful? Explain carefully.
(c) Can $H_{o}$ be rejected at 0.0592 level of significance if a random sample of size 15 yielded $\sum_{i=1}^{15} X_{i}=11$ ? Note that $\sum_{i=1}^{15} X_{i} \sim \operatorname{Binomial}(15, p)$
(d) What is the p-value of this test?

You may want to use Binomial tables for parts (c) and (d).

4 Consider a random sample $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ from a $b(1, p)$ and let $\tau(p)=p$.
(a) Find the Cremer-Rao lower bound for the variance of any unbiased estimator of $\tau(p)$.
(b) Is $\bar{X}$ UMVUE of $\tau(p)$ ? Explain.
(c) Find the efficiency of the estimate $\bar{X}$.

5 Let $X \sim N(\mu, 100)$. To test $H_{o}: \mu=80$ against $H_{a}: \mu<80$, let the critical region be defined by $C=\left\{\left(x_{1}, x_{2}, \ldots, x_{25}\right): \bar{x} \leq 77\right\}$, where $\bar{x}$ is the sample mean of a random sample of size 25 from this distribution.
(a) What is the power function $K(\mu)$ of this test?
(b) What is the significant level of this test?
(c) What are the values of $K(80), K(77)$, and $K(74)$ ?
(d) What is the p-value corresponding to $\bar{X}=76.52$ ?

6 Consider a random sample $\left(X_{1}, X_{2}, \ldots, X_{5}\right)$ from a $\operatorname{Poi}(\lambda), \lambda>0$. Suppose we are interested in a Bayes estimator of $\lambda$ assuming the squared error loss function.
(a) Find the posterior distribution of $\lambda$ given the data, that is $p\left(\lambda \mid x_{1}, x_{2}, \ldots, x_{5}\right)$ if the prior distribution of $\lambda$ is $h(\lambda)=4 \lambda^{2} e^{-2 \lambda}$, $\lambda>0$. Assume $\sum_{1}^{5} X_{i}=4$.
(b) Find the Bayes estimator of $\lambda$ with respect to the squared error loss function.
(c) Show that the Bayes estimator is a weighted average of the MLE of $\lambda$ and the prior mean with weights $\frac{5}{7}$ and $\frac{2}{7}$ respectively.

