Probability and Statistics Test 2

1. Fill in the following blanks:

The probability mass function of a random variable X is a function that satisfies the following properties:

a. b. c.

2. Find the value of the constant c.

a. if
$$f(x) = c\left(\frac{1}{2}\right)^x$$
, $x = 5, 6, 7, ...$
b. if $f(x) = c\left(\frac{1}{2}\right)^x$, $x = 5, 6, 7, ..., 25$

3. Suppose that there are 5 white balls and 3 black balls in a container. Select one randomly and note the color. Without replacing, select another one and note the color. Draw a tree diagram to represent this experiment and give the probabilities of each possibility. What is the probability of getting one while ball and one black ball?

4. Prove that $Var(aX+b) = a^2 Var(X)$.

5. Let
$$f(x) = \frac{x}{10}$$
 for $x = 1, 2, 3, 4$. Find the followings:
a. $E(X)$
b. $Var(X)$
c. $E\left\{ \left[X - E(X) \right]^2 \right\}$
d. $Var(2X + 1)$

6. Let the random variable X have a Geometric distribution with variance 20. Find $P(X \ge 2)$.

7. Let
$$f(x) = q^{x-1}p$$
; $x = 1, 2, ...,$ where $q = 1 - p$. Prove that $E(X) = \frac{1}{p}$.

- 8. Suppose a basketball player can make a free throw 80% of the time. Let X equals the minimum number of free throws that this player must attempt to make a total of 10 shots.
 - a. Find the mean and variance of X.
 - b. Find P(X = 15).

- 9. The American Almanac of Jobs and Salaries, reported that 30% of accountants are employed in public accounting. Assume that this percentage applies to a group of 10 college graduates just entering the accounting profession.
 - a. Find the probability that at least 3 graduates will be employed in public accounting.
 - b. Find the probability that at most 3 graduates will be employed in public accounting.
 - c. Find the probability that less than 3 graduates will be employed in public accounting.
 - d. Find the probability that more than 3 graduates will be employed in public accounting.

10. If the moment generating function is $M_X(t) = \exp\{4(e^t - 1)\}\)$, then find the mean and variance of X.

11. If $M_X(t) = 0.5e^{-t} + 0.5e^t$, then show that $E(X^r) = 0$ when r is odd and $E(X^r) = 1$ when r is even.