Probability and Statistics
Test 2
Name: $\qquad$
$6+14+10+8+12+6+10+10+12+10+5=103$

1. Fill in the following blanks:

The probability mass function of a random variable $X$ is a function that satisfies the following properties:
a.
b.
c.
2. Find the value of the constant $c$.
a. if $f(x)=c\left(\frac{1}{2}\right)^{x}, x=5,6,7, \ldots$
b. if $f(x)=c\left(\frac{1}{2}\right)^{x}, x=5,6,7, \ldots, 25$
3. Suppose that there are 5 white balls and 3 black balls in a container. Select one randomly and note the color. Without replacing, select another one and note the color. Draw a tree diagram to represent this experiment and give the probabilities of each possibility. What is the probability of getting one while ball and one black ball?
4. Prove that $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.
5. Let $f(x)=\frac{x}{10}$ for $x=1,2,3,4$. Find the followings:
a. $E(X)$
b. $\operatorname{Var}(X)$
c. $E\left\{[X-E(X)]^{2}\right\}$
d. $\operatorname{Var}(2 X+1)$
6. Let the random variable $X$ have a Geometric distribution with variance 20 . Find $P(X \geq 2)$.
7. Let $f(x)=q^{x-1} p ; x=1,2, \ldots$, where $q=1-p$. Prove that $E(X)=\frac{1}{p}$.
8. Suppose a basketball player can make a free throw $80 \%$ of the time. Let $X$ equals the minimum number of free throws that this player must attempt to make a total of 10 shots.
a. Find the mean and variance of $X$.
b. Find $P(X=15)$.
9. The American Almanac of Jobs and Salaries, reported that $30 \%$ of accountants are employed in public accounting. Assume that this percentage applies to a group of 10 college graduates just entering the accounting profession.
a. Find the probability that at least 3 graduates will be employed in public accounting.
b. Find the probability that at most 3 graduates will be employed in public accounting.
c. Find the probability that less than 3 graduates will be employed in public accounting.
d. Find the probability that more than 3 graduates will be employed in public accounting.
10. If the moment generating function is $M_{X}(t)=\exp \left\{4\left(e^{t}-1\right)\right\}$, then find the mean and variance of $X$.
11. If $M_{X}(t)=0.5 e^{-t}+0.5 e^{t}$, then show that $E\left(X^{r}\right)=0$ when $r$ is odd and $E\left(X^{r}\right)=1$ when $r$ is even.

