Probability and Statistics

Spring 2007
Test 1

Name:
$6+8+16+4+10+10+6+10+12+8+10=100$
1 (a) Suppose that someone wants to go by car, by train, or by plane on a week's vacation to one of the five East North Central States. Find the number of different ways in which this can be done.
(b) How many different ways can the five starting players of a basketball team be introduced to the public?
(c) Four names are drawn from among the 24 members of a club for the officers of president, vice president, treasurer, and secretary. In how many different ways can this be done?

2 A box contains 24 light bulbs of which 4 are defective. One person selects 10 bulbs from the box in a random manner, and a second person then takes the remaining 14 bulbs.
(a) In how many different ways can the first person select all 4 defective light bulbs among his 10 ?
(b) In how many different ways can the second person select all 4 defective light bulbs among his 14 ?
(c) In how many different ways can the first one have 10 bulbs and the second have 14 bulbs regardless whether the bulbs are defective or not?
(d) What is the probability that all 4 defective bulbs will be obtained by the same person? (Either the first one or the second one)

Consider the experiment of rolling a balanced six-sided die. The sample space can be given as $S=\{1,2,3,4,5,6\}$. Let $A=\{2,3,4\}, B=\{3,4,5\}$, and $C=\{1\}$. Find the following probabilities.
(a) $\quad P(A \cap B)$
(b) $\quad P(A \cup B)$
(c) $\quad P(A \cup C)$
(d) $\quad P\left(A^{\prime} \cap B^{\prime}\right)$
(e) $\quad P\left(A^{\prime} \cap C^{\prime}\right)$
(f) $\quad P\left(A^{\prime} \cap B\right)$
(g) $\quad P\left(A^{\prime} \cup B\right)$
(i) $\quad P(A \cup B \cup C)$

4 The probability of surviving a certain transplant operation is 0.55 . If a patient survives the operation, the probability that his or her body will reject the transplant within a month is 0.20 . What is the probability of surviving both of these critical stages?

5 A card is randomly selected from a deck of 52 cards and placed in a second deck. Then a card is randomly selected from the second deck. What is the probability of getting an ace?

6 If events A and B are independent, prove that the events A and B^{\prime} are also independent
$7 \quad$ Let $P(A)=0.3, P(B \cup C)=0.4$, and $P[(A \cap B) \cup(A \cap C)]=0.2$. Find $P(A \cup B \cup C)$. Use any method you want.

8 Bean seed from supplier A have a 90% germination rate and those from supplier B have an 80% germination rate. A seed packing company purchases 45% of their bean seeds from supplier A and 55% from supplier B and mixes these seeds together.
(a) Find the probability that a seed selected at random from the mixed seeds will germinate, say $P(G)$.
(b) Given that a seed does not germinate, find the probability that the seed was purchased from supplier B.

9 If $P(A)=0.8, P(B)=p$, and $P(A \cup B)=0.9$, find the value of p if
(a) A and B are independent.
(b) A and B are mutually exclusive.
(c) A is a sub set of B.

$$
\begin{aligned}
& \text { If } S=A \cup B, A \cap B=\phi, P(A)=0.35, P(G \mid A)=0.75 \text {, and } \\
& P(G \mid B)=0.85 \text {, find } P(G) \text { and } P(B \mid G) \text {. }
\end{aligned}
$$

11 A deck of 52 cards contains 13 hearts. Suppose that the cards are shuffled and distributed among four players A, B, C, and D so the each player receives 13 cards.
(a) In how many different ways can A will receive 6 hearts, B will receive 4 hearts, C will receive 2 hearts, and D will receive 1 heart?
(b) In how many different ways can each player receive 13 cards?
(c) What is the probability that A receive will 6 hearts, B will receive 4 hearts, C will receive 2 hearts, and D will receive 1 heart?

