Probability and Statistics
Test 2
Name:...

1 Fill in the blanks of the following definition.

The probability mass function (p.m.f.) of a discrete random variable X is a function that satisfies the following properties:
(a) \qquad ;
(b) \qquad ;
(c) \qquad .

2 Find the constant c so that $f(x)$ satisfies the conditions of being a probability mass function of a random variable.

$$
f(x)=c\binom{3}{x}\binom{7}{2-x}, x=0,1,2 . \text { Note that }\binom{n}{x}=\frac{n!}{x!(n-x)!} .
$$

3 Let $f(x)=\frac{x}{6}, x=1,2,3$. Find the following.
(a) $\quad \operatorname{Var}(X)$
(b) $\operatorname{Var}(2 X+5)$

4 Suppose a basketball player can make a free throw 90% of the time. Let X equals the minimum number of free throws that this player must attempt to make a total of 10 shots. Find $P(X=15)$.

The American Almanac of Jobs and Salaries, reported that 30\% of accountants are employed in public accounting. Assume that this percentage applies to a group of 10 college graduates just entering the accounting profession.
(a) Find the probability that at least 3 graduates will be employed in public accounting.
(b) Find the probability that at most 3 graduates will be employed in public accounting.
(c) Find the probability that less than 3 graduates will be employed in public accounting.
(d) Find the probability that more than 3 graduates will be employed in public accounting.

6
If $f(x)=q^{x-1} p$ for $x=1,2, \ldots$, then show that $\sum_{x=1}^{\infty} f(x)=1$.
(6pts)
Note that $q=1-p$. Note that $q=1-p$.

9 Fit a Poisson model to the following data.

X	Observed Frequency	Predicted Freq.
0	10	
1	6	
2	3	
3	1	
4 or more	0	

$$
\hat{\lambda}=
$$

\qquad

11 A certain type of aluminum screen that is two feet wide has on the average one flaw in a 100 -foot roll. Find the probability that a 50 -foot roll has no flaws. ($6 \mathbf{p t s}$)

12 If $M_{X}(t)=\exp \left\{7\left[t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\ldots\right]\right\}$, then find the mean of the random variable X by using $M_{X}(t)$.

Note that $\exp (Y)=e^{Y}$.

