Probability and statistics
Test 2
Fall 2005
Name:
$(4+2+2+4)+(2+2+2+2+2)+(6+2+2)+(6+2+2)+(4+2+2+2+2)+((5+5)+(5+5)+(7+3)+10+6$
1 Let $f(x)=c\left(\frac{1}{3}\right)^{x}, x=1,2, \ldots$ Find the following:
(a) c.
(b) $\quad P(X=2)$
(c) $\quad P(X=4)$
(d) Find $P(X \in A)$, where $A=\{2,4,6, \ldots\}$ Note that A is an infinite set.

If you can't find the value of c in part (a), find the answers of the other parts in terms of c.

2 Let $f(x)=\frac{1}{4}$ for $x=1,2,3,4$. Find the following:
(a) $E(X)$
(b) $E[X(X-1)]$
(c) $\operatorname{Var}(X)$
(d) $\quad E(2 X+3)$
(e) $\operatorname{Var}(2 X+3)$

3 Let an urn has 4 white balls and 5 black balls. Take three balls one at a time without replacement. Let X be the number of white balls drawn. Find the following:
(a) The probability mass function (p.m.f.) of X.
(b) $\quad P(X \geq 1)$.
(c) Mean and variance.

4 Let an urn has 4 white balls and 5 black balls. Take three balls one at a time with replacement. Let X be the number of white balls drawn. Find the following:
(a) The probability mass function (p.m.f.) of X.
(b) $\quad P(X \geq 1)$.
(c) Mean and variance.

5 Let $f(x)=\frac{e^{-2} 2^{x}}{x!}$ for $x=1,2, \ldots$ Find the following:
(a) $E\left(e^{t x}\right)$
(b) $\frac{d}{d t}\left[E\left(e^{t x}\right)\right]$
(c) $\frac{d^{2}}{d t^{2}}\left[E\left(e^{t x}\right)\right]$
(d) Mean
(e) Variance

6 Let $f(x)=p q^{x-1}$ for $x=1,2, \ldots$ Prove the following:
(a) $\quad \sum_{x=1}^{\infty} f(x)=1$
(b) $\quad E(x)=\frac{1}{p}$.

7 Suppose a basketball player can make a free throw 80% of the time. Let X equals the minimum number of free throws that this player must attempt to make a total of 10 shots. Find the following:
(a) Probability mass function of X. i.e. $f(x)$
(b) $P(X \leq 12)$.

8 If X have a Poisson distribution so that $2 P(X=2)=2 P(X=0)+P(X=1)$, find the following. Note that for the Poisson distribution $\lambda>0$.
(a) λ
(c) $E\left(X^{2}\right)$.

9 Derive the moment generating function of one of the following distributions.
(a) Binomial.
(b) Geometric.

10 Let X have a Binomial distribution with $n=20,000$ and $p=0.00015$. Use Poisson approximation to find $P(X>1)$.

