If you can't find the value of c in part (a), find the answers of the other parts in terms of c.

2 Let
$$f(x) = \frac{1}{4}$$
 for $x = 1, 2, 3, 4$. Find the following:

(a)
$$E(X)$$

(b) $E[X(X-1)]$
(c) $Var(X)$
(d) $E(2X+3)$

(d) E(2X+3)(e) Var(2X+3)

- 3 Let an urn has 4 white balls and 5 black balls. Take three balls one at a time **without** replacement. Let *X* be the number of white balls drawn. Find the following:
 - (a) The probability mass function (p.m.f.) of X.
 - (b) $P(X \ge 1)$.
 - (c) Mean and variance.

- 4 Let an urn has 4 white balls and 5 black balls. Take three balls one at a time **with** replacement. Let *X* be the number of white balls drawn. Find the following:
 - (a) The probability mass function (p.m.f.) of X.
 - (b) $P(X \ge 1)$.
 - (c) Mean and variance.

5 Let
$$f(x) = \frac{e^{-2}2^x}{x!}$$
 for $x = 1, 2, ...$ Find the following:
(a) $E(e^{tx})$

(b)
$$\frac{d}{dt} \left[E\left(e^{tx}\right) \right]$$

(c)
$$\frac{d^2}{dt^2} \left[E\left(e^{tx}\right) \right]$$

(d) Mean

6 Let
$$f(x) = pq^{x-1}$$
 for $x = 1, 2, ...$ Prove the following:

(a)
$$\sum_{x=1}^{\infty} f(x) = 1$$
 (b) $E(x) = \frac{1}{p}$.

- 7 Suppose a basketball player can make a free throw 80% of the time. Let *X* equals the minimum number of free throws that this player must attempt to make a total of 10 shots. Find the following:
 - (a) Probability mass function of X. i.e. f(x)

(b) $P(X \le 12)$.

8 If X have a Poisson distribution so that 2P(X = 2) = 2P(X = 0) + P(X = 1), find the following. Note that for the Poisson distribution $\lambda > 0$.

(a) λ (c) $E(X^2)$.

- 9 Derive the moment generating function of **one** of the following distributions.
 - (a) Binomial. (b) Geometric.

10 Let X have a Binomial distribution with n = 20,000 and p = 0.00015. Use Poisson approximation to find P(X > 1).