Probability and Statistics
Test 2
Spring 2009
Name: \qquad
$15+12+12+10+5+10+10+6+10+10=100$
1 Let $f(x)=\frac{2 x+1}{8}$ for $x=1,2$. Let $Y=X^{2}$. Find the following:
a. $E(X)$
b. $E\left(X^{2}\right)$
c. $E\left(X^{4}\right)$
d. $\operatorname{Var}\left(X^{2}\right)$
e. $\operatorname{Var}(3 X+4)$

2 Let X equal the number of rolls of a balanced six-sided die that are required to observe the second six on the top.
a. Find the p.m.f. of X.
b. Give the values of the mean, variance, and standard deviation of X.
c. Find $P(X>4)$.

3 Consider the following experiment. An urn contains 4 black balls and six white balls.
a. Let X be the number of black balls in the sample. Find $P(X=3)$ if three balls are drawn with replacement.
b. Let X be the number of black balls in the sample. Find $P(X=3)$ if three balls are drawn without replacement.
c. If the balls are drawn with replacement and the first black ball is drawn at the $X^{\text {th }}$ trial, then find $P(X=3)$.
d. If the balls are drawn with replacement and the second black ball is drawn at the $X^{\text {th }}$ trial, then find the $P(X=3)$.

4 In a lot of 50 light bulbs, there are 3 defective bulbs. An inspector inspects 6 bulbs selected randomly. Find the probability of finding at least two defective bulbs.

5 Consider the geometric distribution. Show that $\sum_{x=1}^{\infty} f(x)=p+q p+q p^{2}+\ldots .=1$.

6 Let $f(x)=c\left(\frac{1}{2}\right)^{x}$ for $x=2,3,4, \ldots$ and $A=\{3,5,7, \ldots\}$
a. Find the value of c.
b. Find $P(A)$.

7 For a Poisson distribution, show that $f(x+1)=\frac{\lambda}{x+1} f(x)$ for $x=0,1,2 \ldots$ If $f(0)=e^{-2}$, then find $f(1)$ and $f(2)$ using $f(x+1)=\frac{\lambda}{x+1} f(x)$. (Hint: Pick the correct x values. You need to find the value of λ too.)

8 If X have a Poisson distribution so that $2 P(X=2)=2 P(X=0)+P(X=1)$, find λ. Note that for the Poisson distribution $\lambda>0$.

9 Derive the moment generating function of one of the following distributions.
(a) Binomial.
(b) Geometric.
(c) Poisson.

10 If $f(x)=\frac{e^{-\lambda} \lambda^{x}}{x!}$ for $x=0,1,2, \ldots$., then the m.g.f. of X is given by $M_{X}(t)=e^{\lambda\left(e^{t}-1\right)}$.
a. Find $M_{X}(1)$ and $M_{X}(2)$
b. Find $E\left(e^{2 x}+2 e^{x}+1\right)$.

