1 Let
$$f(x) = \frac{2x+1}{8}$$
 for $x = 1, 2$. Let $Y = X^2$. Find the following:
a. $E(X)$
b. $E(X^2)$
c. $E(X^4)$
d. $Var(X^2)$
e. $Var(3X+4)$

- 2 Let X equal the number of rolls of a balanced six-sided die that are required to observe the **second** six on the top.
 - a. Find the p.m.f. of X.
 - b. Give the values of the mean, variance, and standard deviation of X.
 - c. Find P(X > 4).

- 3 Consider the following experiment. An urn contains 4 black balls and six white balls.
 - a. Let X be the number of black balls in the sample. Find P(X = 3) if three balls are drawn with replacement.

b. Let X be the number of black balls in the sample. Find P(X = 3) if three balls are drawn without replacement.

c. If the balls are drawn with replacement and the first black ball is drawn at the X^{th} trial, then find P(X = 3).

d. If the balls are drawn with replacement and the second black ball is drawn at the X^{th} trial, then find the P(X = 3).

4 In a lot of 50 light bulbs, there are 3 defective bulbs. An inspector inspects 6 bulbs selected randomly. Find the probability of finding at least two defective bulbs.

5 Consider the geometric distribution. Show that $\sum_{x=1}^{\infty} f(x) = p + qp + qp^2 + \dots = 1$.

6 Let
$$f(x) = c \left(\frac{1}{2}\right)^x$$
 for $x = 2, 3, 4, ..., and A = \{3, 5, 7, ...\}$
a. Find the value of c .
b. Find $P(A)$.

7 For a Poisson distribution, show that $f(x+1) = \frac{\lambda}{x+1} f(x)$ for x = 0, 1, 2... If $f(0) = e^{-2}$, then find f(1) and f(2) using $f(x+1) = \frac{\lambda}{x+1} f(x)$. (Hint: Pick the correct x values. You need to find the value of λ too.)

8 If X have a Poisson distribution so that 2P(X = 2) = 2P(X = 0) + P(X = 1), find λ . Note that for the Poisson distribution $\lambda > 0$.

- 9 Derive the moment generating function of **one** of the following distributions.
 - (a) Binomial. (b) Geometric. (c) Poisson.

10 If
$$f(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
 for $x = 0, 1, 2,,$ then the m.g.f. of X is
given by $M_x(t) = e^{\lambda(e^t - 1)}$.
a. Find $M_x(1)$ and $M_x(2)$
b. Find $E(e^{2x} + 2e^x + 1)$.