Probability and Statistics
Test 3
Fall 2009
Name:
Problems are almost equally weighted.
1 Find the constant $c$ if $f(x)=\frac{c}{1+x^{2}}$ for $-\infty<x<\infty$.

2 Let $f(x)=x e^{x}, 0<x<1$ be the p.d.f. of $X$. Notice the limits of $X$. Find the mean of the distribution.

3 Let $f(x)=x e^{X}, 0<x<1$ be the p.d.f. of $X$. Notice the limits of $X$. Find the variance of the distribution.

4 Let the p.d.f. of $X$ be $f(x)=\left\{\begin{array}{cc}1+x, & -1<x<0 \\ 1-x, & 0 \leq x<1\end{array}\right.$. Find the c.d.f. of $X$.

5 Derive the moment generating function of $X$ if the p.d.f. of $X$ is $f(x)=2 e^{-2 x}$ for $x \geq 0$.

6 Find $P(X>1 \mid X>0.5)$ if $X$ has the p.d.f. of $f(x)=2 e^{-2 x}$ for $x \geq 0$.

7 Let $X_{1}$ and $X_{2}$ be a random sample from an exponential distribution with the notation in the book. Also assume that $X_{1}$ and $X_{2}$ are independent. Derive the m.g.f. of $Y=X_{1}+X_{2}$. Also find the mean.

8 Let $X_{1}$ and $X_{2}$ be two independent random variables with respective means 1 and 2 and respective variances 4 and 9 . Find the followings:
a. $E\left(X_{1}+X_{2}\right)$
b. $\operatorname{Var}\left(X_{1}+2 X_{2}\right)$
c. $E\left(X_{1} X_{2}\right)$
d. $\operatorname{Var}\left(X_{1} X_{2}\right)$

9 Let $X$ has a continuous uniform distribution with $a=6$ and $b=b, b>a$. If $E(X)=6 \operatorname{Var}(X)$, then find $P\left(X+\frac{35}{X}>12\right)$. Use cover page for formulas.

10 Find the p.d.f. of $Y=X^{2}$ if $f(x)=\frac{1}{3},-2<x<1$.

11 Let the p.d.f. of $X$ be $f(x)=4 x^{3}$ for $0<x<1$. Find the p.d.f. of $Y=X^{4}$ and then $P(Y>0.7)$.

12 Derive the median of $X$ if the p.d.f. of $X$ is $f(x)=2 e^{-2 x}$ for $x \geq 0$.

