Probability and Statistics Test 4 Fall 2005

Name:....

1 Let X_1 , X_2 , and X_3 be a random sample from a Bernoulli distribution with P(X=0) = 0.4. Find $P(X_1 + X_2 + X_3 \le 1)$.

2 Let X_1 and X_2 be a random sample of size 2 form the exponential distribution with $f(x) = e^{-x}$ for $x \ge 0$. Find the value of $P(\max(X_1, X_2) < 2) = P(X_1 < 2 \text{ and } X_2 < 2)$.

3 Let X_1 and X_2 be a random sample of size 2 from exponential distribution with parameter θ . Find the moment generating function of $Y = X_1 + X_2$. Recognize the distribution of Y using the m.g.f. Also report it.

Let X_1 and X_2 be two independent random variables with respective means μ_1 4 and μ_2 and variances σ_1^2 and σ_2^2 . Prove the following by first principles.

(a)
$$E[(X_1 - \mu_1)(X_2 - \mu_2)] = 0$$

(b) $Var(X_1 + X_2) = \sigma_1^2 + \sigma_2^2$.

Let $X_1 \sim N(10, 3^2)$, $X_2 \sim N(20, 4^2)$, and X_1 and X_2 are independent. Find the 5 moment generating function of $Y = X_1 + X_2$. Also find P(Y > 40).

6 Let $X_1 \sim N(0, 2^2)$ and $X_2 \sim N(0, 3^2)$. Assume X_1 and X_2 are independent. Find the following:

(a)
$$P\left[\frac{X_1^2}{4} + \frac{X_2^2}{9} > 5.991\right].$$

(b)
$$P(X_1^2 > 20.096).$$

7 Let X_1 , X_2 , and X_3 be three independent random variables with respective means 1, 2, and 3, and variances 4, 9, and 16. Find the following:

- (a) $E(X_1^2)$.
- (b) $Var(2X_1)$.
- (c) $E(X_1X_2X_3)$.
- (d) $Var(X_1X_2X_3)$.

8 Let $X_1, X_2, ..., X_{16}$ be a random sample from $N(40, 6^2)$. What is the distribution of $Y = \sum_{i=1}^{16} X_i$. Find the constant c such that $P(Y \le c) = 0.9772$.

9 Let X be a random variable with mean 50 and standard deviation 14. Let \overline{X} be the sample mean of a random sample of size 49 from this distribution. Find $P(48 \le \overline{X} \le 54)$.