Probability and Statistics
Test 4
Fall 2005
Name: \qquad

1 Let X_{1}, X_{2}, and X_{3} be a random sample from a Bernoulli distribution with $P(X=0)=0.4$. Find $P\left(X_{1}+X_{2}+X_{3} \leq 1\right)$.

Let X_{1} and X_{2} be a random sample of size 2 form the exponential distribution with $f(x)=e^{-x}$ for $x \geq 0$. Find the value of $P\left(\max \left(X_{1}, X_{2}\right)<2\right)=P\left(X_{1}<2\right.$ and $\left.X_{2}<2\right)$.

Let X_{1} and X_{2} be a random sample of size 2 from exponential distribution with parameter θ. Find the moment generating function of $Y=X_{1}+X_{2}$. Recognize the distribution of Y using the m.g.f. Also report it.

4 Let X_{1} and X_{2} be two independent random variables with respective means μ_{1} and μ_{2} and variances σ_{1}^{2} and σ_{2}^{2}. Prove the following by first principles.
(a) $E\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]=0$
(b) $\operatorname{Var}\left(X_{1}+X_{2}\right)=\sigma_{1}^{2}+\sigma_{2}^{2}$.

5 Let $X_{1} \sim N\left(10,3^{2}\right), X_{2} \sim N\left(20,4^{2}\right)$, and X_{1} and X_{2} are independent. Find the moment generating function of $Y=X_{1}+X_{2}$. Also find $P(Y>40)$.

6 Let $X_{1} \sim N\left(0,2^{2}\right)$ and $X_{2} \sim N\left(0,3^{2}\right)$. Assume X_{1} and X_{2} are independent. Find the following:
(a) $P\left[\frac{X_{1}^{2}}{4}+\frac{X_{2}^{2}}{9}>5.991\right]$.
(b) $\quad P\left(X_{1}^{2}>20.096\right)$.

7 Let X_{1}, X_{2}, and X_{3} be three independent random variables with respective means 1,2 , and 3 , and variances 4,9 , and 16 . Find the following:
(a) $\quad E\left(X_{1}^{2}\right)$.
(b) $\operatorname{Var}\left(2 X_{1}\right)$.
(c) $E\left(X_{1} X_{2} X_{3}\right)$.
(d) $\quad \operatorname{Var}\left(X_{1} X_{2} X_{3}\right)$.

8 Let $X_{1}, X_{2}, \ldots, X_{16}$ be a random sample from $N\left(40,6^{2}\right)$. What is the distribution of $Y=\sum_{i=1}^{16} X_{i}$. Find the constant c such that $P(Y \leq c)=0.9772$.
$9 \quad$ Let X be a random variable with mean 50 and standard deviation 14 . Let \bar{X} be the sample mean of a random sample of size 49 from this distribution. Find $P(48 \leq \bar{X} \leq 54)$.

