1 Let X_1 and X_2 be a random sample of size 2 from $N(10, 5^2)$. Determine

- (a) $P(X_1 < 20 \text{ and } X_2 > 10)$
- (b) $E(X_1X_2)$
- (c) $Var(X_1X_2)$.
- (d) $E(X_1 + 3X_2)$
- (e) $Var(X_1 + 3X_2)$

- 2 Let X_1 and X_2 be a random sample of size 2 from a distribution with p.d.f. f(x) = 6x(1-x), 0 < x < 1. Find the mean and variance of $Y = 2X_1 + X_2$.
 - (a) $E(2X_1 + X_2)$
 - (b) $Var(2X_1 + X_2)$

3 Let X_1 and X_2 be two independent random variables with respective means μ_1 and μ_2 , and respective variances σ_1^2 and σ_2^2 . Show that for real numbers a_1 and a_2 , $Var(a_1X_1 + a_2X_2) = a_1^2Var(X_1) + a_2^2Var(X_2)$.

- 4 Let X_1 and X_2 be two independent random variables with respective moment generating functions (m.g.f.) $M_{X_1}(t) = e^{10t+18t^2}$ and $M_{X_2}(t) = e^{20t+8t^2}$. Let $Y = 2X_1 + X_2$.
 - (a) Derive the m.g.f. of Y.
 - (b) Find P(Y > 64.8).

- Let $X_1, X_2, ..., X_{25}$ be a random sample of size 25 from N(100, 400). Find
 - (a) the distribution of \overline{X} . (name, mean, variance)
 - (b) $P(\overline{X} > 110)$.

(c) the distribution of
$$\sum_{i=1}^{25} X_i$$
. (name, mean, variance)

(d)
$$P\left(\sum_{i=1}^{25} X_i > 2300\right).$$

5

- 6 Let X be a random variable with mean 100 and variance 196. Let \overline{X} be the sample mean of a random sample of size 49.
 - (a) What is the approximate distribution of \overline{X} ? (name, mean, variance)
 - (b) What result did you use here?
 - (c) Find $P(\overline{X} > 103)$.

7 Let X_1 , X_2 , and X_3 be a random sample from a Bernoulli distribution with mean 0.3. Find $P(X_1 + X_2 + X_3 \le 1)$.

8 Let X_1 , X_2 , X_3 , X_4 , and X_5 be mutually independent Poisson random variables having variances 1, 2, 3, 4, and 5 respectively.

(a) Find the m.g.f. of
$$Y = \sum_{i=1}^{5} X_i$$
.

(b) Find P(Y=6).