Probability and Statistics
Spring 2005
Test 4
Name:
$25+10+10+10+16+15+5+10=101$
1 Let X_{1} and X_{2} be a random sample of size 2 from $N\left(10,5^{2}\right)$. Determine
(a) $\quad P\left(X_{1}<20\right.$ and $\left.X_{2}>10\right)$
(b) $\quad E\left(X_{1} X_{2}\right)$
(c) $\operatorname{Var}\left(X_{1} X_{2}\right)$.
(d) $\quad E\left(X_{1}+3 X_{2}\right)$
(e) $\operatorname{Var}\left(X_{1}+3 X_{2}\right)$

Let X_{1} and X_{2} be a random sample of size 2 from a distribution with p.d.f. $f(x)=6 x(1-x), 0<x<1$. Find the mean and variance of $Y=2 X_{1}+X_{2}$.
(a) $\quad E\left(2 X_{1}+X_{2}\right)$
(b) $\quad \operatorname{Var}\left(2 X_{1}+X_{2}\right)$

3 Let X_{1} and X_{2} be two independent random variables with respective means μ_{1} and μ_{2}, and respective variances σ_{1}^{2} and σ_{2}^{2}. Show that for real numbers a_{1} and $a_{2}, \operatorname{Var}\left(a_{1} X_{1}+a_{2} X_{2}\right)=a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)$.

4 Let X_{1} and X_{2} be two independent random variables with respective moment generating functions (m.g.f.) $M_{X_{1}}(t)=e^{10 t+18 t^{2}}$ and $M_{X_{2}}(t)=e^{20 t+8 t^{2}}$. Let $Y=2 X_{1}+X_{2}$.
(a) Derive the m.g.f. of Y.
(b) Find $P(Y>64.8)$.

5 Let $X_{1}, X_{2}, \ldots, X_{25}$ be a random sample of size 25 from $N(100,400)$. Find
(a) the distribution of \bar{X}. (name, mean, variance)
(b) $\quad P(\bar{X}>110)$.
(c) the distribution of $\sum_{i=1}^{25} X_{i}$. (name, mean, variance)
(d) $P\left(\sum_{i=1}^{25} X_{i}>2300\right)$.
$6 \quad$ Let X be a random variable with mean 100 and variance 196 . Let \bar{X} be the sample mean of a random sample of size 49.
(a) What is the approximate distribution of \bar{X} ? (name, mean, variance)
(b) What result did you use here?
(c) Find $P(\bar{X}>103)$.

Let X_{1}, X_{2}, and X_{3} be a random sample from a Bernoulli distribution with mean 0.3. Find $P\left(X_{1}+X_{2}+X_{3} \leq 1\right)$.

8 Let $X_{1}, X_{2}, X_{3}, X_{4}$, and X_{5} be mutually independent Poisson random variables having variances $1,2,3,4$, and 5 respectively.
(a) Find the m.g.f. of $Y=\sum_{i=1}^{5} X_{i}$.
(b) Find $P(Y=6)$.

