(a)
$$P(|Z| > 2.35).$$

(b)
$$P(|Z-1| < 0.5).$$

(c) Value of c such that
$$P(Z^2 > c) = 0.05$$

2 If
$$X \sim N(\mu, \sigma^2)$$
, then prove that $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$.

3 If $X \sim N(7,4)$, then find the value of c such that P(X > c) = 0.05.

4 If $X \sim N(7,4)$, then find the value of c such that $P[(X-7)^2 > c] = 0.05$.

5 If $X_1 \sim N(7,4)$, $X_2 \sim N(5,4)$, and X_1 and X_2 are independent, then find the value of c such that $P\left[(X_1-7)^2 + (X_2-5)^2 > c\right] = 0.05$.

6 Let $X_1 \sim N(7,4)$, $X_2 \sim N(15,9)$, and X_1 and X_2 are independent. Find $P(2X_1 + X_2 > 24)$.

7 Let $X_1, X_2, ..., X_{64}$ be a random sample from a distribution with m.g.f. $M_X(t) = \exp(100t + 32t^2)$. Find $P(\overline{X} > 102.5)$. Note: $\exp(x) = e^x$ 8 Let $X_1, X_2, ..., X_{32}$ be a random sample from a distribution with p.d.f $f(x) = 2x, \ 0 < x < 1$. Find $P\left(\overline{X} > \frac{3}{4}\right)$.

9 Let X be a random variable with mean 50 and standard deviation 14. Let \overline{X} be the sample mean of a random sample of size 49 from this distribution. Find $P(48 \le \overline{X} \le 54)$.

10 Let $X_1 \sim N(10, 3^2)$, $X_2 \sim N(20, 4^2)$, and X_1 and X_2 are independent. Find the moment generating function of $Y = X_1 + X_2$.

- 11 (This is like your last quiz)
- (i) Let $X_1, X_2, ..., X_{16}$ be a random sample from a normal distribution N(77, 25). What is the distribution of \overline{X} ? (Name, mean and variance)
- (ii) If the m.g.f. of X is $M_X(t) = e^{2t^2}$, find the following:
 - (a) Distribution, mean and variance.

(b)
$$P(X > 4)$$

(c) x_0 such that $P(X > x_0) = 0.0062$.