Fall 2	003	tatistics for Business			
11+10)+12+10)+6+12+9+10+4+5+4+7 Our work!			
1	Fill in	Fill in the following blanks:			
	(a)	Probabilities are real numbers between and, inclusive.			
	(b)	<i>P</i> (Sample Space) =			
	(c)	P (Empty Set) =			
	(d)	If two events <i>A</i> and <i>B</i> are mutually exclusive then $P(A \cup B) =$			
	(e)	In general $P(A \cup B) =$			
	(f)	$P(A') = \underline{\qquad}.$			
	(g)	Greek letter m is the symbol for			
	(h)	Greek letter \boldsymbol{s} is the symbol for			
	(i)	Symbol for the empty set is			
	(j)	$(A')' = \underline{\qquad}.$			

2 Consider the experiment of rolling a balanced six-sided die. Sample space $S = \{1, 2, 3, 4, 5, 6\}$. Let $A = \{1, 3, 5\}$ and $B = \{3, 6\}$. Find

- (a) $A \cup B$;
- (b) $A \cup B';$
- (c) $A \cap B';$
- (d) $A' \cap B';$
- (g) $A' \cup B'$.

- 3 Given the mutually exclusive events Y and Z, for which P(Y) = 0.28, and P(Z) = 0.47, find
 - (a) P(Y');
 - (b) $P(Y \cap Z);$
 - (c) $P(Y \cup Z);$
 - (d) $P(Y' \cap Z');$
 - (e) $P(Y'\cup Z');$
 - (f) $P(Y' \cap Z)$.

4 Let a random variable X have a binomial distribution with n = 8 and p = 0.3. Find the following.

- (a) P(X=2)
- (b) P(X is at least 5)
- (c) P(X is less than 2)
- (d) P(X is more than 4)
- (e) P(X is at most 2)

- 5 A civil service examination is designed so that 80% of all high school graduates can pass. Find the probabilities that among 14 high school graduates
 - (a) at least 12 will pass the test;
 - (b) at most 10 will pass the test.

6 Find the **mean**, **variance** and the **standard deviation** of the following distribution.

X	0	1	2
f(x)	0.4	0.2	0.4

7 The following table gives the exact breakdown of 400 inmates in a prison according to their sentences and the status as first or multiple offenders.

	Α	A'	Total
В	120	40	
<i>B'</i>	80	160	
Total			

Let $A = \{$ Sentences less than five years $\}$ and $B = \{$ First offenders $\}$. If an inmate is randomly selected, find the following probabilities.

- (a) P(B) = P (Being a first time offender).
- (b) $P(A \cap B) = P$ (First time offender whose sentence is less than five years).

(c) P(A | B) = P (Having a sentence of less than five years given that the inmate is a first time offender).

Part 2

Name:....

8 Find the following probabilities using the standard normal distribution. Draw a normal probability graph for each part and shade the area of interest.

(10 points)

- (a) $P(Z \leq 0)$.
- (b) $P(Z \le 1.58)$.
- (c) $P(Z \le -1.58)$.
- (d) $P(-1.58 \le Z \le -1.08)$.
- (e) $P(-1.58 \le Z \le 1.08)$.

9 Find the points Z^* such that:

(4 points)

(a) $P(0 \le Z \le Z^*) = 0.4949$:

(b)
$$P(Z < Z^*) = 0.0051.$$

Draw a normal probability graph for each part and shade the area of interest and mark the point of interest.

- 10 Let the random variable X have a normal distribution with the mean 30 and the standard deviation 4. Find the following: (5 points) **Draw graphs for parts (d) and (e).**
 - (a) Z score when X = 35.
 - (b) Z score when X = 22.
 - (c) Z score when X = 38.
 - (d) $P(35 \le X \le 38)$.
 - (e) $P(22 \le X \le 38)$.

- 11 If z_a denotes the value of z for which the area under the standard normal curve to its right is equal to a, find (4 points) Draw graphs.
 - (a) $Z_{0.005}$;

(b) $Z_{0.05}$.

- 12 The lengths of the sardines received by a cannery have a mean of 4.75 inches and a standard deviation of 0.25 inches. If the distribution of these lengths can be approximated closely with a normal distribution, what percentage of all these sardines are (7 points)
 - (a) longer than 4.25 inches;
 - (b) from 4.50 to 5.5 inches long? Draw graphs.