Elementary Statistics for Business

Fall 2003
Name:
$11+10+12+10+6+12+9+10+4+5+4+7$

Show your work!

1 Fill in the following blanks:
(a) Probabilities are real numbers between \qquad and \qquad , inclusive.
(b) $\quad P($ Sample Space $)=$ \qquad .
(c) $\quad P($ Empty Set $)=$ \qquad .
(d) If two events A and B are mutually exclusive then $P(A \cup B)=$ \qquad .
(e) In general $P(A \cup B)=$ \qquad .
(f) $\quad P\left(A^{\prime}\right)=$ \qquad .
(g) Greek letter μ is the symbol for \qquad .
(h) Greek letter σ is the symbol for \qquad .
(i) Symbol for the empty set is \qquad .
(j) $\quad\left(A^{\prime}\right)^{\prime}=$ \qquad .

2 Consider the experiment of rolling a balanced six-sided die. Sample space $S=\{1,2,3,4,5,6\}$. Let $A=\{1,3,5\}$ and $B=\{3,6\}$. Find
(a) $A \cup B$;
(b) $A \cup B^{\prime}$;
(c) $\quad A \cap B^{\prime}$;
(d) $A^{\prime} \cap B^{\prime}$;
(g) $\quad A^{\prime} \cup B^{\prime}$.

3 Given the mutually exclusive events Y and Z, for which $P(Y)=0.28$, and $P(Z)=0.47$, find
(a) $\quad P\left(Y^{\prime}\right)$;
(b) $\quad P(Y \cap Z)$;
(c) $\quad P(Y \cup Z)$;
(d) $\quad P\left(Y^{\prime} \cap Z^{\prime}\right)$;
(e) $\quad P\left(Y^{\prime} \cup Z^{\prime}\right)$;
(f) $\quad P\left(Y^{\prime} \cap Z\right)$.

4 Let a random variable X have a binomial distribution with $\mathrm{n}=8$ and $\mathrm{p}=0.3$. Find the following.
(a) $\quad P(X=2)$
(b) $\quad P(X$ is at least 5$)$
(c) $\quad P(X$ is less than 2$)$
(d) $\quad P(X$ is more than 4$)$
(e) $\quad P(X$ is at most 2$)$

5 A civil service examination is designed so that 80% of all high school graduates can pass. Find the probabilities that among 14 high school graduates
(a) at least 12 will pass the test;
(b) at most 10 will pass the test.

6 Find the mean, variance and the standard deviation of the following distribution.

X	0	1	2
$f(x)$	0.4	0.2	0.4

The following table gives the exact breakdown of 400 inmates in a prison according to their sentences and the status as first or multiple offenders.

	A	A^{\prime}	Total
B	120	40	
B^{\prime}	80	160	
Total			

Let $A=\{$ Sentences less than five years $\}$ and $B=\{$ First offenders $\}$. If an inmate is randomly selected, find the following probabilities.
(a) $\quad P(B)=P($ Being a first time offender $)$.
(b) $\quad P(A \cap B)=P$ (First time offender whose sentence is less than five years).
(c) $\quad P(A \mid B)=P$ (Having a sentence of less than five years given that the inmate is a first time offender).

Part 2

Name: \qquad
8 Find the following probabilities using the standard normal distribution. Draw a normal probability graph for each part and shade the area of interest.
(a) $\quad P(Z \leq 0)$.
(b) $\quad P(Z \leq 1.58)$.
(c) $\quad P(Z \leq-1.58)$.
(d) $\quad P(-1.58 \leq Z \leq-1.08)$.
(e) $\quad P(-1.58 \leq Z \leq 1.08)$.
$9 \quad$ Find the points Z^{*} such that:
(a) $\quad P\left(0 \leq Z \leq Z^{*}\right)=0.4949$:
(b) $\quad P\left(Z<Z^{*}\right)=0.0051$.

Draw a normal probability graph for each part and shade the area of interest and mark the point of interest.

10 Let the random variable X have a normal distribution with the mean 30 and the standard deviation 4 . Find the following: Draw graphs for parts (d) and (e).
(a) Z score when $X=35$.
(b) $\quad Z$ score when $X=22$.
(c) $\quad Z$ score when $X=38$.
(d) $\quad P(35 \leq X \leq 38)$.
(e) $\quad P(22 \leq X \leq 38)$.

11 If z_{α} denotes the value of z for which the area under the standard normal curve to its right is equal to α, find
(4 points)
Draw graphs.
(a) $Z_{0.005}$;
(b) $Z_{0.05}$.

12 The lengths of the sardines received by a cannery have a mean of 4.75 inches and a standard deviation of 0.25 inches. If the distribution of these lengths can be approximated closely with a normal distribution, what percentage of all these sardines are
(7 points)
(a) longer than 4.25 inches;
(b) from 4.50 to 5.5 inches long? Draw graphs.

