


Convert the 4 to 5 odds into a probability.

4

- Given P(A) = 0.59, P(B) = 0.46, and  $P(A \cap B) = 0.38$ , draw a Venn diagram, fill in the probabilities associated with the various regions, and thus determine
  - (a)  $P(A' \cap B)$ ;
  - (b)  $P(A \cup B)$ ;
  - (c)  $P(A' \cap B');$
  - (d)  $P(A' \cup B)$ .

In the following table, 60 college students are classified according to their class standing and also according to their favorite pizza topping:

|               | A<br>Anchovies | O<br>Onions | M<br>Mushrooms | H<br>Hamburger |
|---------------|----------------|-------------|----------------|----------------|
| Freshman (F)  | 7              | 6           | 7              | 3              |
| Sophomore (S) | 1              | 9           | 0              | 9              |
| Junior (J)    | 3              | 2           | 5              | 8              |

If one student is selected at random, find

- (a)  $P(F \cap A)$ ;
- (b)  $P(F \cup A);$
- (c) P(F|A).

| 7 | sample  | a third world country 40% of the population has their own transportation. If a apple of 10 people form this population is selected at random, find the abability that |  |  |
|---|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|   | (a)     | more than 6 people in the sample have their own transportation;                                                                                                       |  |  |
|   | (b)     | at most 2 people in the sample have their own transportation;                                                                                                         |  |  |
|   | (c)     | at least 6 people in the sample have their own transportation.                                                                                                        |  |  |
| 8 | Let the | e random variable $X$ have a binomial distribution with $n = 10$ and $p = 0.4$ .                                                                                      |  |  |
|   | (a)     | the mean of the distribution;                                                                                                                                         |  |  |
|   | (b)     | the variance of the distribution.                                                                                                                                     |  |  |
| 9 | (a)     | Find $Z_{ m 0.005}$ . Draw a graph with all the details.                                                                                                              |  |  |
|   | (a)     | $\mbox{Answer: $Z_{0.005} = \_\_\_$} \label{eq:Z0005}$ Find $Z_{0.01}$ . Draw a graph with all the details.                                                           |  |  |

Answer:  $Z_{0.01} = _____$ 

Find the mean, variance and the standard deviation of the following distribution.

| x    | 0     | 1     | 2     | 3     |
|------|-------|-------|-------|-------|
| f(x) | 0.274 | 0.491 | 0.196 | 0.039 |

| A         |  |
|-----------|--|
| Answers:  |  |
| Allowers. |  |

| Mean:     |  |
|-----------|--|
| Variance: |  |
| S.D.:     |  |

11 Let Z have a standard normal distribution. Find the following:

Draw graphs with all the details.

(a) 
$$P(-1.35 < Z < 2.58)$$
;

(b) 
$$P(1.35 < Z < 2.58)$$
.

- The weights of a large shipment of cast iron bollards are random variables with mean 50.25 pounds and standard deviation 0.63 pounds. What is the probability that a randomly selected bollard from this shipment will weigh
  - (a) less than 49 pounds;
  - (b) between 50 to 51 pounds?

- 13 Sample space is all the possible outcomes of an experiment. (T, F).
- 14 For any two events A and B,  $P(A \cup B) = P(A) + P(B)$ . (T, F)
- 15  $\mu$  is the symbol for sample mean. (T, F)
- Normal curves are symmetric about the mean. (T, F)
- If A and B are mutually exclusive sets (events), then  $A \cap B$  is an empty set (event). (T, F)
- Area under the standard normal curve is one unit. (T, F)
- Area under the curve of a normal distribution with mean 10 and standard deviation 2 is equal to one (T,F).