## Elementary Statistics for Business

Test 4
Fall 2003
Name: $\qquad$
1 Measurements of the heat-producing capacity of coal from two mines yielded the following results.

| $n_{1}=35$ | $\bar{x}_{1}=8060$ | $s_{1}=452$ |
| :--- | :--- | :--- |
| $n_{2}=45$ | $\bar{x}_{2}=7800$ | $s_{2}=407$ |

The measurements are in millions of calories per ton. Can we conclude that the mean heat-producing capacity of coal from two mines is not the same at 0.05 level of significance? Assume that the two populations are normal. Find the pvalue.

2 Unfortunately, arsenic occurs naturally in some ground water. A mean arsenic level of 8 parts per billion ( ppb ) is considered safe for agricultural use. A well in Texas is tested on a regular basis for arsenic. A random sample of 36 gave a sample mean of 7.2 ppb with a standard deviation of 1.9 ppb . Does this information indicate that the mean level of arsenic in this well is less than 8 ppb ? Use 0.01 level of significance.

3 An educator claims that the average salary of substitute teachers in school districts in Allegheny County, Pennsylvania, is less than $\$ 60$ per day. A random sample of 8 school districts is selected, and the daily salaries are shown below.
$\begin{array}{llllllll}\$ 60 & \$ 56 & \$ 60 & \$ 55 & \$ 70 & \$ 55 & \$ 60\end{array}$
Is there enough evidence to support the educators claim at 0.05 level of significance? Note that the sample mean is $\$ 58.88$ and the sample standard deviation is $\$ 5.08$. Assume that the average salary of substitute teachers is normally distributed.

4 Harpers index reported that $80 \%$ of all supermarket prices and in the digit 9 or 5 . Suppose you check a random sample of 115 items in a supermarket and find that 88 have prices that end in 9 or 5 . Does this indicate that less than $80 \%$ of the prices in the store end in the digits 9 and 5? Use 0.05 level of significance.

5 (a) Find the regression line.
(b) Find the correlation coefficient.
(c) Test $H_{0}: b=0$ against $H_{a}: b \neq 0$ using 0.05 level of significance. p-value= $\qquad$
Conclusion: $\qquad$
(d) Find a 95\% confidence interval for the intercept.

| 2.1 | 10.2 |
| ---: | ---: |
| 3.5 | 10.8 |
| 3.7 | 8.9 |
| 4.2 | 8.5 |
| 5.8 | 5.1 |
| 6.5 | 5.3 |
| MARY OUTPUT |  |


| Regression Statistics |  |
| :--- | ---: |
| Multiple R | 0.921846 |
| R Square | 0.8498 |
| Adjusted | 0.812251 |
| R Square |  |
| Standard | 1.049506 |
| Error |  |
| Observati | 6 |
| ons |  |

ANOVA

|  | $d f$ |  | SS | MS | $F$ | Significance $F$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| Regressio | 1 | 24.92748 | 24.92748 | 22.63124 | 0.008923 |  |
| n |  |  |  |  |  |  |
| Residual | 4 | 4.405853 | 1.101463 |  |  |  |
| Total | 5 | 29.33333 |  |  |  |  |


|  | Coefficient | Standard | $t$ Stat | P-value | Lower | Upper |
| :--- | :---: | :---: | :---: | :---: | :---: | ---: |
|  | s | Error |  |  | $95 \%$ | $95 \%$ |
| Intercept | 14.10149 | 1.325693 | 10.63708 | 0.000442 | 10.42077 | 17.78221 |
| X Variable | -1.38794 | 0.291755 | -4.75723 | 0.008923 | -2.19799 | -0.5779 |

(a) $-1 \leq r \leq 1$ (True, False)
(b) $0 \leq r^{2} \leq 1$ (True, False)
(c) If $b>0$, then $r>0$. (True, False)
(d) If $b<0$, then $r<0$. (True, False)
(e) Reject $H_{0}$ if p-value $<\alpha$.
(True, False)
(f) In linear regression, we use a $t$-distribution with $n-1$ degrees of freedom to do hypotheses testing about slope and the intercept.
(True, False)
(g) $\quad \alpha=\mathrm{P}[$ Type II error]
(True, False)
(h) $\quad \beta=\mathrm{P}[$ Type II error] (True, False)
(i) Keeping sample size constant if $\alpha$ is decreased then $\beta$ will be decreased.
(True, False)
(j) The only way to reduce both $\alpha$ and $\beta$ is to decrease the sample size.
(True, False)

