Elementary Statistics for Business Test 4 Fall 2003

Name:....

1 Measurements of the heat-producing capacity of coal from two mines yielded the following results.

$n_1 = 35$	$\overline{x}_1 = 8060$	$s_1 = 452$
$n_2 = 45$	$\overline{x}_2 = 7800$	$s_2 = 407$

The measurements are in millions of calories per ton. Can we conclude that the mean heat-producing capacity of coal from two mines is not the same at 0.05 level of significance? Assume that the two populations are normal. Find the p-value.

2 Unfortunately, arsenic occurs naturally in some ground water. A mean arsenic level of 8 parts per billion (ppb) is considered safe for agricultural use. A well in Texas is tested on a regular basis for arsenic. A random sample of 36 gave a sample mean of 7.2 ppb with a standard deviation of 1.9 ppb. Does this information indicate that the mean level of arsenic in this well is less than 8 ppb? Use 0.01 level of significance.

3 An educator claims that the average salary of substitute teachers in school districts in Allegheny County, Pennsylvania, is less than \$60 per day. A random sample of 8 school districts is selected, and the daily salaries are shown below.

\$60 \$56 \$60 \$55 \$70 \$55 \$60 \$55

Is there enough evidence to support the educators claim at 0.05 level of significance? Note that the sample mean is \$58.88 and the sample standard deviation is \$5.08. Assume that the average salary of substitute teachers is normally distributed.

4 Harpers index reported that 80% of all supermarket prices and in the digit 9 or 5. Suppose you check a random sample of 115 items in a supermarket and find that 88 have prices that end in 9 or 5. Does this indicate that less than 80% of the prices in the store end in the digits 9 and 5? Use 0.05 level of significance.

- (a) Find the regression line.
 - (b) Find the correlation coefficient.
 - (c) Test $H_0: b = 0$ against $H_a: b \neq 0$ using 0.05 level of significance. p-value=_____

Conclusion:_____

(d) Find a 95% confidence interval for the intercept.

2.1	10.2
3.5	10.8
3.7	8.9
4.2	8.5
5.8	5.1
6.5	5.3
SUMMARY	OUTPUT
Regression	Statistics
Multiple R	0.921846
R Square	0.8498
Adjusted	0.812251
R Square	
Standard	1.049506
Error	
Observati	6
ons	

ANOVA

	df		SS	MS	F	Significance F
Regressio n		1	24.92748	24.92748	22.63124	0.008923
Residual		4	4.405853	1.101463		
Total		5	29.33333			

	Coefficient	Standard	t Stat	P-value	Lower	Upper
	S	EIIOI			95%	95%
Intercept	14.10149	1.325693	10.63708	0.000442	10.42077	17.78221
X Variable	-1.38794	0.291755	-4.75723	0.008923	-2.19799	-0.5779

5

6 True/False questions.

(a)	$-1 \le r \le 1$	(True, False)
(b)	$0 \le r^2 \le 1$	(True, False)
(c)	If $b > 0$, then $r > 0$.	(True, False)
(d)	If $b < 0$, then $r < 0$.	(True, False)
(e)	Reject H_0 if p-value $< \alpha$.	(True, False)
(f)	In linear regression, we use a <i>t</i> -distration to do hypotheses testing about slope	The formula $n - 1$ degrees of freedom and the intercept. (True, False)
(g)	$\alpha = P[Type II error]$	(True, False)
(h)	$\beta = P[Type II error]$	(True, False)
(i)	Keeping sample size constant if α i	s decreased then β will be decreased.
		(True, False)
(j)	The only way to reduce both α and	β is to decrease the sample size.

(True, False)