- (a) $A \cap B$
- (b) $A \cup B$
- (c) $A \cap B'$
- (d) $A' \cap B'$
- (e) $A \cup B'$

2 If
$$P(A) = 0.65$$
 then find $P(A')$.

3 What is the value of P(S)?

4 If
$$A \cap B = \phi$$
, $P(A) = 0.48$, and $P(B) = 0.3$, then find $P(A \cup B)$.

- 5 What are the odds for the occurrence if its probability is 0.65?
- 6 Convert 3 to 7 odds to probability.

7 If P(A) = 0.42, P(B) = 0.27, and $P(A \cap B) = 0.17$, then find the following:

- (a) $P(A \cup B)$
- (b) $P(A' \cup B')$
- (c) $P(A \cap B')$
- (d) $P(A' \cap B')$
- (e) $P(A \cup B')$
- 8 The data below, in thousands, represent the age of persons receiving Medicaid and their poverty level. (Source: U.S. Census Bureau)

	Under 18 years (A)	18 years and over (A')
Below Poverty Level (<i>B</i>)	8,550	6,834
Above Poverty Level (B')	5,884	7,440

- (a) Among those receive Medicaid, what percent is below the poverty level? Or find P(B).
- (b) Among those receive Medicaid, what percent is above the poverty level and under 18 years of age? Or find $P(A \cap B')$.
- (c) Among those receive Medicaid, if a randomly selected person is under 18 years of age, what is the probability that he or she is below poverty level? That is find P(B|A).

Let X have a Binomial distribution with n = 6 and p = 0.4. Find the following:

(a) P(X=2)

9

- (b) P(X < 2)
- (c) $P(X \le 2)$
- (d) P(X > 2)
- (e) $P(X \ge 2)$

10 Consider the following distribution.

X	1	2	3
P(X)	0.7	0.2	0.1

Find (a) Mean

(b) Variance

(c) Standard deviation

- 11 Find the following probabilities using the standard normal distribution. Draw a normal probability graph for each part and shade the area of interest.
 - (a) $P(Z \le 0)$.
 - (b) $P(Z \le 1.58)$.
 - (c) $P(Z \le -1.08)$.
 - (d) $P(-1.58 \le Z \le -1.08)$.
 - (e) $P(-1.58 \le Z \le 1.08)$.
- 12 If z_{α} denotes the value of Z for which the area under the standard normal curve to its right is equal to α , find
 - (a) $z_{0.0228}$;
 - (b) $z_{0.0250}$;

Also draw a normal probability graph for each part and shade the area of interest and mark the point of interest.

- 13 Let the random variable X have a normal distribution with the mean 50 and the standard deviation 4. Find the following: Also draw graphs for parts (d) and (e).
 - (a) Z score when X = 55.
 - (b) Z score when X = 42.
 - (c) Z score when X = 58.
 - (d) $P(55 \le X \le 58)$.
 - (e) $P(42 \le X \le 58).$