1. Let X_1 and X_2 be independent random variables with p.d.f.'s $f_1(x_1) = 2x_1$, $0 < x_1 < 1$ and $f_2(x_2) = 4x_2^3$, $0 < x_2 < 1$, respectively. Compute

(a) $P(0.5 < x_1 < 1 \text{ and } 0.4 < x_2 < 0.8)$.

(b) $E[X_1^2 X_2^3]$.

2. Let X_1, X_2, X_3, and X_4 be a random sample from Pois(2). Let $Y = \sum_{i=1}^{4} X_i$.

(a) Find the moment generating function of Y and decide the distribution of Y by observation.
Let X_1 and X_2 be a random sample from a distribution with p.d.f $f(x) = 12x^2(1-x)$, $0 < x < 1$. Let $Y = X_1 + 2X_2$.

(20 pts)

(a) Find the mean of Y.

(b) Find the variance of Y.

4 Prove the following theorem.

(10 pts)

If X_1, X_2, ..., X_n are observations of a random sample of size n from the normal distribution $N(\mu, \sigma^2)$, then the distribution of the sample mean \bar{X} is $N\left(\mu, \frac{\sigma^2}{n}\right)$. Hint: First find $M_X(t)$.
Let X_1, X_2, \ldots, X_{16} be a random sample from a normal distribution $N(77, 25)$. Compute

(a) $P(75 < \bar{X} < 79.5)$.

(b) $P\left(1200 < \sum_{i=1}^{16} X_i < 1272\right)$.

Let X_1, X_2, \ldots, X_{48} be a random sample from $\text{Unif}(0, 6)$.

(a) Find the approximate distribution of \bar{X}.

(b) Compute the approximate probability of $\bar{X} > 3.4$.
Let X_1 and X_2 be two independent random variables with respective means $\mu_1 = 4$ and $\mu_2 = 5$ and variances $\sigma_1^2 = 4$ and $\sigma_2^2 = 9$. Find the mean and variance of $Y = X_1X_2$.

(10 pts)