Let X_1 and X_2 be a random sample of size 2 from $N(10, 5^2)$. Determine

(a) $P(X_1 < 20$ and $X_2 > 10)$

(b) $E(X_1X_2)$

(c) $Var(X_1X_2)$.

(d) $E(X_1 + 3X_2)$

(e) $Var(X_1 + 3X_2)$
Let X_1 and X_2 be a random sample of size 2 from a distribution with p.d.f. $f(x) = 6x(1-x), \ 0 < x < 1$. Find the mean and variance of $Y = 2X_1 + X_2$.

(a) $E(2X_1 + X_2)$

(b) $Var(2X_1 + X_2)$
Let X_1 and X_2 be two independent random variables with respective means μ_1 and μ_2, and respective variances σ_1^2 and σ_2^2. Show that for real numbers a_1 and a_2, $\text{Var}(a_1X_1 + a_2X_2) = a_1^2\text{Var}(X_1) + a_2^2\text{Var}(X_2)$.

Let X_1 and X_2 be two independent random variables with respective moment generating functions (m.g.f.) $M_{X_1}(t) = e^{10t+18t^2}$ and $M_{X_2}(t) = e^{20t+8t^2}$. Let $Y = 2X_1 + X_2$.

(a) Derive the m.g.f. of Y.

(b) Find $P(Y > 64.8)$.
Let X_1, X_2, \ldots, X_{25} be a random sample of size 25 from $N(100, 400)$. Find

(a) the distribution of \bar{X}. (name, mean, variance)

(b) $P(\bar{X} > 110)$.

(c) the distribution of $\sum_{i=1}^{25} X_i$. (name, mean, variance)

(d) $P\left(\sum_{i=1}^{25} X_i > 2300\right)$.
Let X be a random variable with mean 100 and variance 196. Let \bar{X} be the sample mean of a random sample of size 49.

(a) What is the approximate distribution of \bar{X}? (name, mean, variance)

(b) What result did you use here?

(c) Find $P(\bar{X} > 103)$.
7 Let $X_1, X_2, \text{ and } X_3$ be a random sample from a Bernoulli distribution with mean 0.3. Find $P(X_1 + X_2 + X_3 \leq 1)$.

8 Let $X_1, X_2, X_3, X_4, \text{ and } X_5$ be mutually independent Poisson random variables having variances 1, 2, 3, 4, and 5 respectively.

(a) Find the m.g.f. of $Y = \sum_{i=1}^{5} X_i$.

(b) Find $P(Y = 6)$.