Problem #1

\(Y = \) Hardness \\
\(X = \) Time \\
Assume the normal error regression model.

1. Fit the model \(E(Y) = \beta_0 + \beta_1 X \).

2. Evaluate \(\sigma^2 \).

3. Evaluate \(\varepsilon \) when \(X = 10 \).

4. Test \(H_0 : \beta_1 = 1.85 \) Vs \(H_a : \beta_1 \neq 1.85 \).

5. Construct a 95% confidence interval for \(\beta_0 \).

6. Construct a 90% confidence interval for \(E(Y_b) \) when \(X_b = 60 \).

7. Find a 90% prediction interval for a new observation when time equals 60.

8. Comment on the residual plot.

9. Comment on the normal probability plot.

10. Conduct the correlation test for normality.

11. Conduct the Shapiro-Wilks test for normality.

12. Conduct the modified Levene test for constant error variance.

13. Conduct a Breusich-Pagen test for constant error variance.

14. Fit the model \(E(Y) = \beta_0 + \beta_1 X + \beta_2 X^2 \).

15. Test \(H_0 : \beta_2 = 0 \) Vs \(H_a : \beta_2 \neq 0 \).

17 Construct a 90% simultaneous confidence interval for \(\beta_0 \) and \(\beta_1 \) using the model in part 14.

18 Write down the SAS codes to generate the attached output. (Sorry)

Problem #2

Consider the model \(E(Y) = \beta_0 + \beta_1 X \).

Data: \[
\begin{array}{cc}
Y & X \\
5 & 1 \\
8 & 2 \\
11 & 1 \\
13 & 2 \\
\end{array}
\]

(a) Find the \(X \) matrix.

(b) Find the vector \(b \).

(c) Find the hat matrix.

(d) Find the vector \(\hat{Y} \).

(e) Find the vector \(\hat{\varepsilon} \).

(f) Transform the independent variable as \(Z = \frac{X - \bar{X}}{0.5} \).

Data: \[
\begin{array}{cc}
Y & Z \\
5 & 1 \\
8 & 1 \\
11 & 1 \\
13 & 1 \\
\end{array}
\]

(i) Find the new \(X \) matrix.

(ii) Find the new hat matrix.

(iii) Find the vector \(\hat{Y} \) (after transformation).

(iv) Find the vector \(\hat{\varepsilon} \) (after transformation).

(g) Comment on the hat matrix, \(\hat{Y} \), and \(\hat{\varepsilon} \) before and after transformation. What are the implications of this result?