1. (a) Consider the experiment of rolling a six-sided die. What is the sample space S?

(b) If $A = \{a, b, c, d, e\}$ and $B = \{a, e, i, o, u\}$, then find $A \cap B$.

(c) If $A = \{0, 1, 2\}$ and $B = \{0, 5, 10\}$, then find $A \cup B$.

(d) If $S = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 5\}$, and $B = \{3, 6\}$, then find $A \cap B'$.

(e) If $S = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 5\}$, and $B = \{3, 6\}$, then find $A' \cap B'$.

(f) If $S = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 5\}$, and $B = \{3, 6\}$, then find $(A \cup B)'$.
Let \(P(A) = 0.5 \), \(P(B) = 0.6 \), and \(P(A \cap B) = 0.3 \). Find the following probabilities.

(a) \(P(A \cup B) \).

(b) \(P(A' \cap B') \).

(c) \(P(A' \cap B') \).

(d) \(P\left(A \cap B' \right) \).

(e) \(P\left(A \cup B' \right) \).

3 Fill in the following blanks.

(a) Probabilities are real numbers between ________ and _______, inclusive.

(b) If an event is certain to occur, its probability is ____, and if an event is certain not to occur, its probability is _____.

(c) If two events are mutually exclusive, the probability that one or the other will occur equals the _____ of their probabilities.

(d) The sum of the probabilities that an event will occur and that it will not occur is equal to _____.
4 The following table gives the exact breakdown of 400 inmates in a prison according to their sentences and the status as first or multiple offenders.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A'</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>120</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>B'</td>
<td>80</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Let $A=$\{Sentences less than five years\} and $B=$\{First offenders\}. If an inmate is randomly selected, find the following probabilities.

(a) $P(B)$.

(b) $P(A \cap B)$.

(c) $P(A | B)$.

(d) Explain $P(A' | B)$ in words.

5 Is $f(x)$ given below an appropriate probability distribution function? Explain.

<table>
<thead>
<tr>
<th>X</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>0.25</td>
<td>0.50</td>
<td>0.25</td>
</tr>
</tbody>
</table>

(a) Yes No (Circle the correct answer)
(b) Explanation.
Let the random variable X have a Binomial distribution with $n = 10$ and $p = 0.4$. Find the following:

(a) $P(X < 3)$.
(b) $P(X \leq 3)$.
(c) $P(X \geq 4)$.
(d) $P(X > 5)$.
(e) $P(3 \leq X < 6)$.

The American Almanac of Jobs and Salaries, reported that 30% of accountants are employed in public accounting. Assume that this percentage applies to a group of 10 college graduates just entering the accounting profession. Find the following:

(a) Find the probability that at least 3 graduates will be employed in public accounting.

(b) Find the probability that at most 3 graduates will be employed in public accounting.

(c) Find the probability that less than 3 graduates will be employed in public accounting.

(d) Find the probability that more than 3 graduates will be employed in public accounting.
Consider the following probability distribution.

<table>
<thead>
<tr>
<th>X</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>0.20</td>
<td>0.60</td>
<td>0.20</td>
</tr>
</tbody>
</table>

(a) Find the mean.

(b) Find the variance.

(c) Find the standard deviation.

Find the following. Draw graphs for each part.

(a) $Z_{0.028}$.

(b) $Z_{0.025}$.

Let the random variable Z have a standard normal distribution.

(a) What is the mean of the standard normal distribution?
(b) What is the variance of the standard normal distribution?

Let the random variable Z have a standard normal distribution. Find the following probabilities. Draw graphs for each part.

(a) $P(0 < Z < 2.68)$

(b) $P(Z < 2.68)$

(c) $P(Z > 2.68)$

(d) $P(2.35 < Z < 2.68)$

(e) $P(-2.35 < Z < 2.68)$
Drivers who are members of a union earn an average of $20.00 per hour. Assume that available data indicate wages are normally distributed with a standard deviation of $2.25.

(a) What is the probability that wages are between $15.50 and $24.50 per hour?

(b) What is the probability that the wages are less than $15.00 per hour?

(c) Find the wage \(w_0 \) such that only 2.5% of the union drivers earn more than \(w_0 \).